Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Bioelectromagnetics ; 45(3): 97-109, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37493434

RESUMEN

This study aims to investigate the cellular effects of radiofrequency exposure, 1950 MHz, long-term evolution (LTE) signal, administered alone and in combination with mitomycin-C (MMC), a well-known cytotoxic agent. Chinese hamster lung fibroblast (V79) cells were exposed/sham exposed in a waveguide-based system under strictly controlled conditions of both electromagnetic and environmental parameters, at specific absorption rate (SAR) of 0.3 and 1.25 W/kg. Chromosomal damage (micronuclei formation), oxidative stress (reactive oxygen species [ROS] formation), and cell cycle progression were analyzed after exposure and coexposure. No differences between exposed samples and sham-controls were detected following radiofrequency exposure alone, for all the experimental conditions tested and biological endpoints investigated. When radiofrequency exposure was followed by MMC treatment, 3 h pre-exposure did not modify MMC-induced micronuclei. Pre-exposure of 20 h at 0.3 W/kg did not modify the number of micronuclei induced by MMC, while 1.25 W/kg resulted in a significant reduction of MMC-induced damage. Absence of effects was also detected when CW was used, at both SAR levels. MMC-induced ROS formation resulted significantly decreased at both SAR levels investigated, while cell proliferation and cell cycle progression were not affected by coexposures. The results here reported provide no evidence of direct effects of 1950 MHz, LTE signal. Moreover, they further support our previous findings on the capability of radiofrequency pre-exposure to induce protection from a subsequent toxic treatment, and the key role of the modulated signals and the experimental conditions adopted in eliciting the effect.


Asunto(s)
Pulmón , Mitomicina , Cricetinae , Animales , Cricetulus , Mitomicina/toxicidad , Especies Reactivas de Oxígeno , Fibroblastos
2.
Artículo en Inglés | MEDLINE | ID: mdl-37372672

RESUMEN

The evolution of emerging technologies that use Radio Frequency Electromagnetic Field (RF-EMF) has increased the interest of the scientific community and society regarding the possible adverse effects on human health and the environment. This article provides NextGEM's vision to assure safety for EU citizens when employing existing and future EMF-based telecommunication technologies. This is accomplished by generating relevant knowledge that ascertains appropriate prevention and control/actuation actions regarding RF-EMF exposure in residential, public, and occupational settings. Fulfilling this vision, NextGEM commits to the need for a healthy living and working environment under safe RF-EMF exposure conditions that can be trusted by people and be in line with the regulations and laws developed by public authorities. NextGEM provides a framework for generating health-relevant scientific knowledge and data on new scenarios of exposure to RF-EMF in multiple frequency bands and developing and validating tools for evidence-based risk assessment. Finally, NextGEM's Innovation and Knowledge Hub (NIKH) will offer a standardized way for European regulatory authorities and the scientific community to store and assess project outcomes and provide access to findable, accessible, interoperable, and reusable (FAIR) data.


Asunto(s)
Teléfono Celular , Campos Electromagnéticos , Humanos , Campos Electromagnéticos/efectos adversos , Exposición a Riesgos Ambientales/prevención & control , Ondas de Radio/efectos adversos
4.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955556

RESUMEN

In the last years, radiofrequency (RF) has demonstrated that it can reduce DNA damage induced by a subsequent treatment with chemical or physical agents in different cell types, resembling the adaptive response, a phenomenon well documented in radiobiology. Such an effect has also been reported by other authors both in vitro and in vivo, and plausible hypotheses have been formulated, spanning from the perturbation of the cell redox status, to DNA repair mechanisms, and stress response machinery, as possible cellular mechanisms activated by RF pre-exposure. These mechanisms may underpin the observed phenomenon, and require deeper investigations. The present study aimed to determine whether autophagy contributes to RF-induced adaptive response. To this purpose, SH-SY5Y human neuroblastoma cells were exposed for 20 h to 1950 MHz, UMTS signal, and then treated with menadione. The results obtained indicated a reduction in menadione-induced DNA damage, assessed by applying the comet assay. Such a reduction was negated when autophagy was inhibited by bafilomycin A1 and E64d. Moreover, CRISPR SH-SY5Y cell lines defective for ATG7 or ATG5 genes did not show an adaptive response. These findings suggest the involvement of autophagy in the RF-induced adaptive response in human neuroblastoma cells; although, further investigation is required to extend such observation at the molecular level.


Asunto(s)
Neuroblastoma , Vitamina K 3 , Autofagia , Línea Celular Tumoral , Ensayo Cometa , Humanos , Neuroblastoma/metabolismo , Ondas de Radio
5.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35216437

RESUMEN

In the last decades, experimental studies have been carried out to investigate the effects of radiofrequency (RF, 100 kHz-300 GHz) electromagnetic fields (EMF) exposure on the apoptotic process. As evidence-based critical evaluation of RF and apoptosis in vitro is lacking, we performed a scoping literature review with the aim of systematically mapping the research performed in this area and identifying gaps in knowledge. Eligible for inclusion were in vitro studies assessing apoptosis in mammalian cells exposed to RF-EMF, which met basic quality criteria (sham control, at least three independent experiments, appropriate dosimetry analysis and temperature monitoring). We conducted a systematic literature review and charted data in order to overview the main characteristics of included studies. From the 4362 papers retrieved with our search strategy, 121 were pertinent but, among them, only 42 met basic quality criteria. We pooled data with respect to exposure (frequency, exposure level and duration) and biological parameters (cell type, endpoint), and highlighted some qualitative trends with respect to the detection of significant effect of RF-EMF on the apoptotic process. We provided a qualitative picture of the evidence accumulated so far, and highlighted that the quality of experimental methodology still needs to be highly improved.


Asunto(s)
Apoptosis/efectos de la radiación , Campos Electromagnéticos/efectos adversos , Animales , Humanos , Mamíferos , Ondas de Radio/efectos adversos
7.
Med Biol Eng Comput ; 60(2): 297-320, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34586563

RESUMEN

Magnetic resonance imaging (MRI) is one of the most-used diagnostic imaging methods worldwide. There are ∼50,000 MRI scanners worldwide each of which involves a minimum of five workers from different disciplines who spend their working days around MRI scanners. This review analyzes the state of the art of literature about the several aspects of the occupational exposure to electromagnetic fields (EMF) in MRI: regulations, literature studies on biological effects, and health surveillance are addressed here in detail, along with a summary of the main approaches for exposure assessment. The original research papers published from 2013 to 2021 in international peer-reviewed journals, in the English language, are analyzed, together with documents published by legislative bodies. The key points for each topic are identified and described together with useful tips for precise safeguarding of MRI operators, in terms of exposure assessment, studies on biological effects, and health surveillance.


Asunto(s)
Campos Electromagnéticos , Exposición Profesional , Campos Electromagnéticos/efectos adversos , Humanos , Campos Magnéticos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Exposición Profesional/análisis , Medición de Riesgo
8.
Environ Res ; 196: 110935, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33647301

RESUMEN

In previous studies we demonstrated that radiofrequency (RF) electromagnetic fields (EMF) is able to reduce DNA damage induced by a subsequent treatment with genotoxic agents, resembling the adaptive response, a phenomenon well known in radiobiology. In this study we report on the capability of the culture medium from SH-SY5Y neuroblastoma cells exposed to 1950 MHz to elicit, in recipient non-exposed cells, a reduction of menadione-induced DNA damage (P < 0.05; comet assay), indicating the capability of non-ionizing radiation to elicit a bystander effect. A comparable reduction was also detected in cultures directly exposed to the same EMF conditions (P < 0.05), confirming the adaptive response. In the same exposure conditions, we also evidenced an increase of heat shock protein 70 (hsp70) in culture medium of cells exposed to RF with respect to sham exposed ones (P < 0.05; western blot analysis), while no differences were detected in the intracellular content of hsp70. On the whole, our results evidence a protective effect of RF against menadione-induced DNA damage in directly and non-directly exposed cells, and suggest hsp70 pathway to be investigated as one of the potential candidate underpinning the interaction between RF exposure and biological systems.


Asunto(s)
Efecto Espectador , Neuroblastoma , Línea Celular , Daño del ADN , Campos Electromagnéticos/efectos adversos , Humanos , Ondas de Radio/efectos adversos
9.
Environ Int ; 148: 106386, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33486297

RESUMEN

BACKGROUND: Exposure to radiofrequency electromagnetic fields (RF-EMF, 100 kHz - 300 GHz) emitted by wireless communication technologies is pervasive and ubiquitous. Concern has been raised about possible adverse effects to human health. In 2011 the International Agency for Research on Cancer has classified RF-EMF as possibly carcinogenic to humans, highlighting that the evidence is weak and far from conclusive. Updated systematic reviews of the scientific literature on this topic are lacking, especially for mechanistic studies. OBJECTIVES: To develop a protocol for a systematic review of experimental studies investigating genotoxic effects induced by RF-EMF in in vitro cellular models. Genotoxicity is one of the key-biological indicators of carcinogenicity, and the most common characteristics of established carcinogens. The predefined procedures for conducting the systematic review are outlined below. METHODS: We will follow the guidelines developed by the National Toxicology Program-Office of Health Assessment and Translation (NTP-OHAT), adapted to the evaluation of in vitro studies. ELIGIBILITY CRITERIA: We will include experimental in vitro studies addressing the relationship between controlled exposures to RF-EMF and genotoxicity in mammalian cells only. Eligibility for inclusion will be further restricted to peer reviewed articles reporting findings from primary studies. INFORMATION SOURCES: We will search the scientific literature databases NCBI PubMed, Web of Science, and EMF-Portal. No filter on publication date will be applied. Only studies published in English will be considered. The reference lists of the included papers and available reviews will be screened for unidentified relevant papers. References will be managed through Endnote X9 software. DATA EXTRACTION AND SYNTHESIS OF RESULTS: Data from included papers will be extracted according to predefined forms. Heterogeneity within the available evidence will determine the type of evidence synthesis that is appropriate. Findings will be summarized in tables, graphical displays and in a narrative synthesis of the available evidences. A meta-analysis will be carried out if subgroups of studies homogeneous in terms of exposure characteristics, endpoint, and cell types will be identified. RISK OF BIAS: The internal validity of included studies will be assessed using the NTP-OHAT Risk of Bias Rating Tool for animal studies, adapted to in vitro studies. This stage of the process will be managed through the Health Assessment Workspace Collaborative (HAWC). EVIDENCE APPRAISAL: To rate confidence in the body of evidence, we will use the OHAT GRADE-based approach for animal studies. FRAMEWORK AND FUNDING: This protocol concerns one of the evidence streams considered in a larger systematic review of the scientific literature on the potential carcinogenicity of RF-EMF, performed by scientists from several Italian public research agencies. The project is supported by the Italian Workers' Compensation Authority (INAIL) in the framework of the CRA with the Istituto Superiore di Sanità "BRiC 2018/06 - Scientific evidence on the carcinogenicity of radiofrequency electromagnetic fields".


Asunto(s)
Campos Electromagnéticos , Ondas de Radio , Animales , Daño del ADN , Campos Electromagnéticos/efectos adversos , Humanos , Metaanálisis como Asunto , Ondas de Radio/efectos adversos , Proyectos de Investigación , Medición de Riesgo , Revisiones Sistemáticas como Asunto
10.
Artículo en Inglés | MEDLINE | ID: mdl-31752074

RESUMEN

The last decades have seen a huge increase in applications and devices using and emitting non-ionizing radiation, otherwise referred to as "electromagnetic fields" (EMF) [...].

11.
Artículo en Inglés | MEDLINE | ID: mdl-31382475

RESUMEN

In previous investigations, we demonstrated that pre-exposure of different cell cultures to radiofrequency fields can reduce the damage induced by genotoxic agents, an effect resembling the so-called adaptive response. In this study, we pre-exposed human peripheral blood lymphocytes and Chinese hamster lung fibroblast cell line to 1950 MHz, UMTS (Universal Mobile Telecommunication System) signal, for 20 h, and then treated cultures with Mitomycin-C. After confirming the induction of an adaptive response in terms of the reduction of micronuclei formation, we observed that such a response was negated by treatments with 3-aminobenzamide. Since 3-aminobenzamide is an inhibitor of poly (ADP-ribose) polymerase enzyme, which is involved in DNA repair, these results support the possible involvement of DNA repair mechanisms in radiofrequency-induced adaptive response.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Benzamidas/farmacología , Modelos Biológicos , Ondas de Radio , Animales , Línea Celular , Células Cultivadas , Cricetinae , Cricetulus , Daño del ADN , Reparación del ADN , Humanos , Linfocitos/efectos de los fármacos , Micronúcleos con Defecto Cromosómico , Mitomicina/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores
13.
Sci Rep ; 8(1): 13234, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185877

RESUMEN

This study aims to assess whether a 1950 MHz radiofrequency (RF) electromagnetic field could protect human neuroblastoma SH-SY5Y cells against a subsequent treatment with menadione, a chemical agent inducing DNA damage via reactive oxygen species formation. Cells were pre-exposed for 20 h to specific absorption rate of either 0.3 or 1.25 W/kg, and 3 h after the end of the exposure, they were treated with 10 µM menadione (MD) for 1 h. No differences were observed between sham- and RF-exposed samples. A statistically significant reduction in menadione-induced DNA damage was detected in cells pre-exposed to either 0.3 or 1.25 W/kg (P < 0.05). Moreover, our analyses of gene expression revealed that the pre-exposure to RF almost inhibited the dramatic loss of glutathione peroxidase-based antioxidant scavenging efficiency that was induced by MD, and in parallel strongly enhanced the gene expression of catalase-based antioxidant protection. In addition, RF abolished the MD-dependent down-regulation of oxoguanine DNA glycosylase, which is a critical DNA repairing enzyme. Overall, our findings suggested that RF pre-exposure reduced menadione-dependent DNA oxidative damage, most probably by enhancing antioxidant scavenging efficiency and restoring DNA repair capability. Our results provided some insights into the molecular mechanisms underlying the RF-induced adaptive response in human neuroblastoma cells challenged with menadione.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Terapia por Radiofrecuencia , Vitamina K 3/efectos adversos , Línea Celular Tumoral , Campos Electromagnéticos , Humanos , Neuroblastoma/etiología , Neuroblastoma/genética , Neuroblastoma/terapia , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Factores Protectores , Especies Reactivas de Oxígeno/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/efectos de la radiación
14.
Technol Cancer Res Treat ; 17: 1533033818788072, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30021498

RESUMEN

Reversible electroporation is used to increase the uptake of chemotherapeutic drugs in local tumor treatment (electrochemotherapy) by applying the pulsing protocol (8 rectangular pulses, 1000 V/cm, 100 µs) standardized in the framework of the European Standard Operating Procedure on Electrochemotherapy multicenter trial. Currently, new electrochemotherapy strategies are under development to extend its applicability to tumors with different histology. Electrical parameters and drug type are critical factors. A possible approach is to test pulse parameters different from European Standard Operating Procedure on Electrochemotherapy but with comparable electroporation yield (European Standard Operating Procedure on Electrochemotherapy-equivalent protocols). Moreover, the use of non-toxic drugs combined with electroporation represents the new frontier for electrochemotherapy applications; calcium electroporation has been recently proposed as a simple tool for anticancer therapy. In vitro investigations facilitate the optimization of electrical parameters and drugs for in vivo and clinical testing. In this optimization study, new pulsing protocols have been tested by increasing the pulse number and reducing the electric field with respect to the standard. European Standard Operating Procedure on Electrochemotherapy-equivalent protocols have been identified in HL-60 and A431 cancer cell models, and a higher sensitivity in terms of electroporation yield has been recorded in HL-60 cells. Moreover, cell killing efficacy of European Standard Operating Procedure on Electrochemotherapy-equivalent protocols has been demonstrated in the presence of increasing calcium concentrations on both cell lines. Equivalent European Standard Operating Procedure on Electrochemotherapy protocols can be used to optimize the therapeutic effects in the clinic, where different regions of the same cancer tissue, with different electrical properties, might result in a differential electroporation yield of the standard protocol over the same tissue, or, eventually, in an override of the operational limits of the instrument. Moreover, using calcium can help overcome the drawbacks of standard drugs (side effects, high costs, difficult handling, preparation, and storage procedures). These results support the possibility of new treatment options in both standard electrochemotherapy and calcium electroporation, with clear advantages in the clinic.


Asunto(s)
Calcio/uso terapéutico , Electroquimioterapia , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Humanos , Neoplasias/patología
15.
Front Public Health ; 5: 280, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29094036

RESUMEN

It has been shown that magnetic fields in the extremely low frequency range (ELF-MF) can act as a stressor in various in vivo or in vitro systems, at flux density levels below those inducing excitation of nerve and muscle cells, which are setting the limits used by most generally accepted exposure guidelines, such as the ones published by the International Commission on Non-Ionizing Radiation Protection. In response to a variety of physiological and environmental factors, including heat, cells activate an ancient signaling pathway leading to the transient expression of heat shock proteins (HSPs), which exhibit sophisticated protection mechanisms. A number of studies suggest that also ELF-MF exposure can activate the cellular stress response and cause increased HSPs expression, both on the mRNA and the protein levels. In this review, we provide some of the presently available data on cellular responses, especially regarding HSP expression, due to single and combined exposure to ELF-MF and heat, with the aim to compare the induced effects and to detect possible common modes of action. Some evidence suggest that MF and heat can act as costressors inducing a kind of thermotolerance in cell cultures and in organisms. The MF exposure might produce a potentiated or synergistic biological response such as an increase in HSPs expression, in combination with a well-defined stress, and in turn exert beneficial effects during certain circumstances.

16.
Bioelectromagnetics ; 38(4): 245-254, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28072461

RESUMEN

In this study, the effect of radiofrequency (RF) exposure to 1950 MHz, Universal Mobile Telecommunication System signal, was investigated in Chinese hamster lung fibroblast cell line (V79). Genotoxic and cytotoxic effects of 20-h exposure at specific absorption rate (SAR) values from 0.15 W/kg to 1.25 W/kg were measured by means of cytokinesis-block micronucleus (MN) assay. Exposure was carried out blinded under strictly controlled conditions of dosimetry and temperature. The effect of RF exposure alone at four SAR values was tested, that is, 0.15, 0.3, 0.6, and 1.25 W/kg. A statistically significant increase in MN frequency was found in cultures exposed to 0.15 and 0.3 W/kg (P < 0.05) compared to sham-exposed ones, in the absence of cytotoxicity. SAR values of 0.6 and 1.25 W/kg did not exert any effect. Moreover, to evaluate the ability of RF to exert protective effects with respect to a chemical mutagen, cell cultures were also pre-exposed for 20 h at 0.3 or 1.25 W/kg, and then treated with 500 ng/ml of mitomycin-C (MMC). A significant reduction in the frequency of MN was detected in cultures pre-exposed to 1.25 W/kg compared to cultures treated with MMC alone (P < 0.05), indicating induction of adaptive response. Such a decrease was not induced by pre-exposure at 0.3 W/kg SAR. Taken together, our results indicated that V79 is a sensitive cell model to evidence either adverse or beneficial effects of RF exposure, depending on experimental conditions applied. Bioelectromagnetics. 38:245-254, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Fibroblastos/efectos de la radiación , Pulmón/citología , Ondas de Radio/efectos adversos , Adaptación Fisiológica/efectos de la radiación , Animales , Línea Celular , Cricetinae , Cricetulus , Citocinesis/efectos de la radiación , Daño del ADN , Fibroblastos/citología , Fibroblastos/metabolismo , Pruebas de Micronúcleos
17.
Front Public Health ; 5: 344, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29326919

RESUMEN

Magnetic resonance imaging (MRI) has evolved rapidly over the past few decades as one of the most flexible tools in medical research and diagnostic imaging. MRI facilities are important sources of multiple exposure to electromagnetic fields for both patients and health-care staff, due to the presence of electromagnetic fields of multiple frequency ranges, different temporal variations, and field strengths. Due to the increasing use and technological advancements of MRI systems, clearer insights into exposure assessment and a better understanding of possible harmful effects due to long-term exposures are highly needed. In the present exploratory study, exposure assessment and biomonitoring of MRI workers at the Radio-diagnostics Unit of the National Cancer Institute of Naples "Pascale Foundation" (Naples, Italy) have been carried out. In particular, exposure to the MRI static magnetic field (SMF) has been evaluated by means of personal monitoring, while an application tool has been developed to provide an estimate of motion-induced, time-varying electric fields. Measurement results have highlighted a high day-to-day and worker-to-worker variability of the exposure to the SMF, which strongly depends on the characteristics of the environment and on personal behaviors, and the developed application tool can be adopted as an easy-to-use tool for rapid and qualitative evaluation of motion-induced, time-varying electric field exposure. Regarding biomonitoring, the 24 workers of the Radio-diagnostics Unit were enrolled to evaluate both spontaneous and mitomycin C-induced chromosomal fragility in human peripheral blood lymphocytes, by means of the cytokinesis-block micronucleus assay. The study subjects were 12 MRI workers, representative of different professional categories, as the exposed group, and 12 workers with no MRI exposure history, as the reference group. The results show a high worker-to-worker variability for both field exposure assessment and biomonitoring, as well as several critical issues and practicalities to be faced with in this type of investigations. The procedures for risk assessment and biomonitoring proposed here can be used to inform future research in this field, which will require a refinement of exposure assessment methods and an enlargement of the number of subjects enrolled in the biomonitoring study to gain robust statistics and reliable results.

18.
Artículo en Inglés | MEDLINE | ID: mdl-27420084

RESUMEN

Possible hazardous effects of radiofrequency electromagnetic fields (RF-EMF) at low exposure levels are controversially discussed due to inconsistent study findings. Therefore, the main focus of the present study is to detect if any statistical association exists between RF-EMF and cellular responses, considering cell proliferation and apoptosis endpoints separately and with both combined as a group of "cellular life" to increase the statistical power of the analysis. We searched for publications regarding RF-EMF in vitro studies in the PubMed database for the period 1995-2014 and extracted the data to the relevant parameters, such as cell culture type, frequency, exposure duration, SAR, and five exposure-related quality criteria. These parameters were used for an association study with the experimental outcome in terms of the defined endpoints. We identified 104 published articles, from which 483 different experiments were extracted and analyzed. Cellular responses after exposure to RF-EMF were significantly associated to cell lines rather than to primary cells. No other experimental parameter was significantly associated with cellular responses. A highly significant negative association with exposure condition-quality and cellular responses was detected, showing that the more the quality criteria requirements were satisfied, the smaller the number of detected cellular responses. According to our knowledge, this is the first systematic analysis of specific RF-EMF bio-effects in association to exposure quality, highlighting the need for more stringent quality procedures for the exposure conditions.


Asunto(s)
Línea Celular/fisiología , Campos Electromagnéticos/efectos adversos , Ondas de Radio/efectos adversos , Apoptosis/fisiología , Proliferación Celular/fisiología , Humanos
19.
Sci Rep ; 6: 19398, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26762783

RESUMEN

The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components.


Asunto(s)
Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Campos Magnéticos , Línea Celular , Supervivencia Celular/efectos de la radiación , Daño del ADN/efectos de la radiación , Campos Electromagnéticos/efectos adversos , Humanos , Campos Magnéticos/efectos adversos , Imagen por Resonancia Magnética , Exposición Profesional , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
20.
Nanomedicine (Lond) ; 10(3): 351-60, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24823432

RESUMEN

AIM: This study was designed to investigate the cytotoxicity of multiwalled carbon nanotube buckypaper (BP) in stimulated human peripheral blood lymphocytes. Materials & methods & results: BP treatment led to a delay in the cell growth, as proven by a minor increase in the cell number over time relative to that seen in untreated cells, assessed by trypan blue, resazurin and neutral red assays. The analysis of cell-cycle profile, by propidium iodide staining, indicated that BP treatment blocked cell-cycle progression by arresting cells at the G0/G1 phase. Moreover, increased apoptosis was also recorded by Annexin V-fluorescein isothiocyanate/propidium iodide staining. CONCLUSION: The results presented here demonstrate an inhibitor effect of BP on cell growth that was likely through cytostatic and cytotoxic events.


Asunto(s)
Apoptosis/efectos de los fármacos , Linfocitos/efectos de los fármacos , Nanotubos de Carbono/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Linfocitos/citología , Nanotubos de Carbono/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...